Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Shape control has been a major theme of nanocrystal research in terms of synthesis, property tailoring, and optimization of performance in a variety of applications. Among the possible shapes, bipyramids are unique owing to their symmetry, planar defects, and exposed facets. In this article, we focus on the colloidal synthesis of noble‐metal nanocrystals featuring a triangular bipyramidal shape, together with highlights of their properties and applications. We start with a brief discussion of the general classification and requirements for the nucleation and growth of bipyramidal nanocrystals, followed by specific aspects regarding the synthetic methods with a focus on the roles of reduction, etching, and capping, as well as controls of facet, size, aspect ratio, and corner truncation. In the end, we illustrate how these aspects affect the properties of bipyramidal nanocrystals for plasmonic and catalytic applications, together with future perspectives.more » « less
-
Abstract In addition to the conventional knobs such as composition, size, shape, and defect structure, the crystal structure (or phase) of metal nanocrystals offers a new avenue for engineering their properties. Various strategies have recently been developed for the fabrication of colloidal metal nanocrystals in metastable phases different from their bulk counterparts. With a focus on noble metals, we begin with a brief introduction to their atomic packing, followed by a discussion about five major synthetic approaches to their colloidal nanocrystals in unconventional phases. We then highlight the success of synthesis in terms of mechanistic insights and experimental controls, as well as the enhanced catalytic properties. We end this Minireview with perspectives on the remaining issues and future opportunities.more » « less
-
Abstract A relatively unexplored aspect of noble‐metal nanomaterials is polymorphism, or their ability to crystallize in different crystal phases. Here, a method is reported for the facile synthesis of Ru@Pd core–shell nanocrystals featuring polymorphism, with the core made of hexagonally close‐packed (hcp)‐Ru while the Pd shell takes either anhcpor face‐centered cubic (fcc)phase. The polymorphism shows a dependence on the shell thickness, with shells thinner than ≈1.4 nm taking thehcpphase whereas the thicker ones revert tofcc. The injection rate provides an experimental knob for controlling the phase, with one‐shot and drop‐wise injection of the Pd precursor corresponding tofcc‐Pd andhcp‐Pd shells, respectively. When these nanocrystals are tested as catalysts toward formic acid oxidation, the Ru@Pdhcpnanocrystals outperform Ru@Pdfccin terms of both specific activity and peak potential. Density functional theory calculations are also performed to elucidate the origin of this performance enhancement.more » « less
-
Surface Capping Agents and Their Roles in Shape‐Controlled Synthesis of Colloidal Metal NanocrystalsAbstract Surface capping agents have been extensively used to control the evolution of seeds into nanocrystals with diverse but well‐controlled shapes. Here we offer a comprehensive review of these agents, with a focus on the mechanistic understanding of their roles in guiding the shape evolution of metal nanocrystals. We begin with a brief introduction to the early history of capping agents in electroplating and bulk crystal growth, followed by discussion of how they affect the thermodynamics and kinetics involved in a synthesis of metal nanocrystals. We then present representative examples to highlight the various capping agents, including their binding selectivity, molecular‐level interaction with a metal surface, and impacts on the growth of metal nanocrystals. We also showcase progress in leveraging capping agents to generate nanocrystals with complex structures and/or enhance their catalytic properties. Finally, we discuss various strategies for the exchange or removal of capping agents, together with perspectives on future directions.more » « less
An official website of the United States government
